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1. Neural Network Components/Types

¢ 1.1 Neurons and Layers
o Structure and Function of Neurons

o Input, Hidden, and Output Layers
o Activation Functions and Their Role
¢ 1.2 Neural Network Types
o 1.2.1 Feedforward Neural Networks (FNNs)
o 1.2.2 Convolutional Neural Networks (CNNs)
o 1.2.3 Recurrent Neural Networks (RNNs)
° 1.2.4 Autoencoders
o 1.2.5 Generative Adversarial Networks (GANs)
o 1.2.6 Transformer Networks

¢ 1.3 Advanced Components

o Attention Mechanisms
o Residual Connections
o Batch Normalization

2. Designing a Perceptron for Classification

¢ 2.1 Introduction to the Perceptron

o Definition and Historical Background
o Perceptron as a Linear Classifier

¢ 2.2 Perceptron Model Components

o Input Features
o Weights and Biases
o Activation Function (Threshold Function)

2.3 Training the Perceptron

o Learning Rule (Weight Update)
o Loss Function (Mean Squared Error)
o Convergence and Limitations

¢ 2.4 Implementing the Perceptron
o Step-by-Step Perceptron Design
o Code Implementation (Python/Other Languages)

¢ 2.5 Perceptron in Practice

o Applications and Use Cases
o Perceptron vs. Multi-Layer Perceptron (MLP)

3. Analyzing Parameter/Hyperparameter Impact

¢ 3.1 Understanding Parameters vs. Hyperparameters

o Definitions and Key Differences

¢ 3.2 Common Parameters in Neural Networks

o Weights and Biases
o Activation Function Choices

¢ 3.3 Common Hyperparameters

o Learning Rate

o Number of Layers and Neurons

o Batch Size and Number of Epochs
o Dropout Rate

o Optimizers (SGD, Adam, RMSprop)

¢ 3.4 Hyperparameter Tuning Techniques
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o Grid Search
o Random Search
o Bayesian Optimization
¢ 3.5 Impact of Hyperparameters on Model Performance

o Qverfitting and Underfitting
o Convergence Speed and Stability
o Generalization to Unseen Data

4. Evaluating Architectures and Activation Functions
¢ 4.1 Evaluation of Neural Network Architectures

o Architectures Overview (FNNs, CNNs, RNNs, etc.)
o Comparing Architectures Based on Use Cases
o Architecture Complexity vs. Performance

¢ 4.2 Impact of Activation Functions

o Overview of Common Activation Functions (Sigmoid, ReLU, Tanh, etc.)
o Effect on Model Performance and Training
o Activation Function Selection for Different Layers

¢ 4.3 Techniques for Architecture Evaluation

o Cross-Validation
o Regularization Techniques
o Ensemble Methods

¢ 4.4 Practical Case Studies

o Examples of Successful Architectures in Real-World Applications

5. Developing Comprehensive Evaluation Plans for Neural Network Models

¢ 5.1 Evaluation Metrics

o Accuracy, Precision, Recall, F1-Score
o ROC-AUC, Confusion Matrix
o Loss Functions (Cross-Entropy, MSE)

5.2 Model Validation Techniques

o Holdout Validation
o K-Fold Cross-Validation
o Leave-One-Out Cross-Validation

¢ 5.3 Monitoring and Analyzing Training

o Learning Curves
o Qverfitting Detection
o Early Stopping

¢ 5.4 Model Deployment Considerations

o Scalability
o Inference Speed and Efficiency
o Model Interpretability and Explainability

¢ 5.5 Post-Deployment Monitoring

o Continuous Learning
o Monitoring Model Drift
o Periodic Retraining and Updates

Each of these subtopics can be expanded with examples, case studies, and practical

v

exercises to solidify understanding and application in real-world scenarios.

v 1. Neural Network Components/Types

https://colab.research.google.com/drive/1yYJZzAKlqwRa3rJDxQXv33uR6i3pAz_0#scrollTo=Y2DUq_604IEs&printMode=true 2/19



8/13/24, 12:09 PM Unit1_Deep Learning.ipynb - Colab

¢ 1.1 Neurons and Layers

o Example: lllustrate how a single neuron processes input and produces an output.
o Case Study: Analyze the role of different layers in a CNN used for image recognition.
o Exercise: Implement a simple neural network with one hidden layer in Python using a library like TensorFlow or PyTorch.

¢ 1.2 Neural Network Types
o Example: Compare a simple Feedforward Neural Network (FNN) with a CNN in terms of structure and data flow.

o Case Study: Examine how RNNs are used in sentiment analysis in natural language processing.
o Exercise: Build and train a CNN for image classification on the CIFAR-10 dataset.

¢ 1.3 Advanced Components

o Example: Explain how attention mechanisms enhance the performance of Transformer networks.
o Case Study: Investigate the impact of batch normalization in training deep networks.
o Exercise: Modify a neural network to include residual connections and observe the impact on training.

2. Designing a Perceptron for Classification

¢ 2.1 Introduction to the Perceptron

o Example: lllustrate how a perceptron makes a binary classification decision.
o Case Study: Discuss the limitations of the perceptron and how it led to the development of multi-layer networks.
o Exercise: Manually compute the output of a perceptron for a given set of inputs and weights.

¢ 2.2 Perceptron Model Components

o Example: Visualize the effect of different weights and biases on the decision boundary.
o Case Study: Analyze a scenario where a perceptron fails to classify data due to non-linearity.
o Exercise: Implement a perceptron from scratch and train it on the OR logic gate dataset.

¢ 2.3 Training the Perceptron

o Example: Show how the perceptron learning rule updates weights based on errors.
o Case Study: Explore the convergence of a perceptron on linearly separable data.
o Exercise: Train a perceptron on a dataset and visualize the decision boundary at each iteration.

¢ 2.4 Implementing the Perceptron

o Example: Code a perceptron algorithm in Python using NumPy.
o Case Study: Implement the perceptron algorithm to classify the Iris dataset.
o Exercise: Modify the perceptron code to classify a new binary classification problem.

¢ 2.5 Perceptron in Practice

o Example: Compare a perceptron with a multi-layer perceptron (MLP) in terms of flexibility.
o Case Study: Analyze real-world applications of perceptrons in spam filtering.
o Exercise: Implement a multi-layer perceptron and compare its performance with the basic perceptron on the same dataset.

3. Analyzing Parameter/Hyperparameter Impact
¢ 3.1 Understanding Parameters vs. Hyperparameters

o Example: Differentiate between weights (parameters) and learning rate (hyperparameters) in a neural network.
o Case Study: Analyze the impact of hyperparameter tuning on the performance of a model trained on the MNIST dataset.
o Exercise: Identify parameters and hyperparameters in a given neural network model.

¢ 3.2 Common Parameters in Neural Networks

o Example: Discuss how the choice of activation function affects the behavior of weights and biases.
o Case Study: Investigate how different activation functions (ReLU, Tanh) affect model performance.
o Exercise: Experiment with different activation functions in a neural network and observe the changes in learning.

¢ 3.3 Common Hyperparameters

o Example: Explain how the learning rate impacts the convergence of a neural network.
o Case Study: Evaluate the effect of batch size on training time and model accuracy.
o Exercise: Use grid search to tune the hyperparameters of a neural network on a dataset.

¢ 3.4 Hyperparameter Tuning Techniques

o Example: Introduce grid search and random search as methods for hyperparameter tuning.
o Case Study: Apply Bayesian optimization to fine-tune the hyperparameters of a deep neural network.
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o Exercise: Implement a grid search for hyperparameter tuning and compare the results with random search.
¢ 3.5 Impact of Hyperparameters on Model Performance

o Example: lllustrate overfitting and underfitting through different hyperparameter settings.
o Case Study: Analyze how regularization techniques like dropout affect overfitting in a neural network.
o Exercise: Experiment with different learning rates and regularization methods to optimize a model's performance.

4. Evaluating Architectures and Activation Functions
¢ 4.1 Evaluation of Neural Network Architectures

o Example: Compare the architecture of a simple FNN with a CNN and explain their respective advantages.
o Case Study: Analyze a CNN architecture like AlexNet or VGG and understand the design decisions.
o Exercise: Design and evaluate a custom CNN architecture for a specific task (e.g., digit classification).

4.2 Impact of Activation Functions

o Example: Demonstrate how ReLU activation mitigates the vanishing gradient problem.
o Case Study: Compare the performance of a neural network using ReLU and Sigmoid activation functions on the same task.
o Exercise: Experiment with different activation functions in the hidden layers of a neural network and analyze their impact.

¢ 4.3 Techniques for Architecture Evaluation

o Example: Explain the role of cross-validation in evaluating the performance of a neural network architecture.
o Case Study: Evaluate an ensemble of models trained on different subsets of data and compare their performance.
o Exercise: Implement cross-validation for a neural network and analyze the results.

4.4 Practical Case Studies

o Example: Discuss a real-world application where the architecture of the neural network was key to its success.
o Case Study: Explore the architecture of a state-of-the-art model used in image recognition or natural language processing.
o Exercise: Recreate a simplified version of a popular architecture (e.g., ResNet) and evaluate its performance on a dataset.

5. Developing Comprehensive Evaluation Plans for Neural Network Models

¢ 5.1 Evaluation Metrics

o Example: Explain how accuracy, precision, recall, and F1-score are calculated and their significance in model evaluation.

o Case Study: Analyze a scenario where a model with high accuracy fails due to imbalanced data and why F1-score is more
appropriate.

o Exercise: Calculate and compare different evaluation metrics for a neural network model trained on an imbalanced dataset.

5.2 Model Validation Techniques

o Example: Illustrate how k-fold cross-validation works and its benefits over holdout validation.
o Case Study: Apply leave-one-out cross-validation to a small dataset and discuss its impact on model evaluation.
o Exercise: Implement k-fold cross-validation for a neural network model and analyze the results.

¢ 5.3 Monitoring and Analyzing Training

o Example: Plot learning curves to visualize training and validation loss over epochs.
o Case Study: Investigate a case where early stopping prevented overfitting during training.
o Exercise: Train a neural network with early stopping and monitor the learning curves.

¢ 5.4 Model Deployment Considerations

o Example: Discuss the importance of inference speed in deploying models for real-time applications.
o Case Study: Explore the challenges of deploying a neural network model in a cloud environment.
o Exercise: Deploy a trained neural network model as a web service and test its performance.

¢ 5.5 Post-Deployment Monitoring

o Example: Explain how model drift can occur over time and affect the performance of a deployed model.
o Case Study: Analyze a case where continuous learning was used to keep a model up-to-date in a dynamic environment.
o Exercise: Implement a basic monitoring system to track the performance of a deployed neural network model over time.

Start coding or generate with AI.

To help you implement and understand each subtopic, I'll provide code snippets and explanations. Since the topic is extensive, I'll cover a few
examples from each subtopic. If you need detailed code for a specific part, feel free to ask!
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« 1. Neural Network Components/Types

1.1 Neurons and Layers

¢ Example: Implementing a simple neuron in Python.
import numpy as np

# Define the input features

inputs = np.array([1, 2, 3, 4])

# Initialize weights and bias
weights = np.array([06.1, 0.2, 0.3, 0.4])
bias = 0.5

# Calculate the output of the neuron
output = np.dot(inputs, weights) + bias
print(f"Output of the neuron: {output}")

¢ Exercise: Implement a simple neural network with one hidden layer.

import numpy as np

# Sigmoid activation function
def sigmoid(x):
return 1 / (1 + np.exp(-x))

# Derivative of sigmoid
def sigmoid_derivative(x):

return x * (1 - x)

# Input data
inputs = np.array([[0, @], [e, 1], [1, @], [1, 1]])

# Expected output
expected_output = np.array([[0], [1], [1], [@]])

# Initialize weights and biases
input_layer_neurons = inputs.shape[1] # Number of input features
hidden_layer_neurons = 2 # Number of hidden layer neurons

output_neurons = 1 # Number of output neurons

# Random weights and biases initialization

hidden_weights = np.random.uniform(size=(input_layer_neurons, hidden_layer_neurons))

hidden_bias = np.random.uniform(size=(1, hidden_layer_neurons))

output_weights = np.random.uniform(size=(hidden_layer_neurons, output_neurons))

output_bias = np.random.uniform(size=(1, output_neurons))

# Learning rate

learning_rate = 0.1

# Training the network

for _ in range(10000):
# Forward Propagation
hidden_layer_activation = np.dot(inputs, hidden_weights)
hidden_layer_activation += hidden_bias

hidden_layer_output = sigmoid(hidden_layer_activation)

output_layer_activation = np.dot(hidden_layer_output, output_weights)
output_layer_activation += output_bias

predicted_output = sigmoid(output_layer_activation)

# Backpropagation

error = expected_output - predicted_output

https://colab.research.google.com/drive/1yYJZzAKlqwRa3rJDxQXv33uR6i3pAz_0#scrollTo=Y2DUq_604IEs&printMode=true
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d_predicted_output = error * sigmoid_derivative(predicted_output)

error_hidden_layer = d_predicted_output.dot(output_weights.T)

d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)

# Updating Weights and Biases

output_weights += hidden_layer_output.T.dot(d_predicted_output) * learning_rate
output_bias += np.sum(d_predicted_output, axis=0, keepdims=True) * learning_rate
hidden_weights += inputs.T.dot(d_hidden_layer) * learning_rate

hidden_bias += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rate

print(f"Final predicted output: {predicted_output}")

1.2 Neural Network Types

¢ Exercise: Build and train a CNN for image classification on the CIFAR-10 dataset.

import tensorflow as tf

from tensorflow.keras import layers, models

# Load CIFAR-10 dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifarle.load_data()

# Normalize the images

x_train, x_test = x_train / 255.0, x_test / 255.0

# Define the CNN model

model = models.Sequential([
layers.Conv2D(32, (3, 3), activation="relu', input_shape=(32, 32, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10)

i)

# Compile the model
model.compile(optimizer="adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=["'accuracy'])

# Train the model

model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# Evaluate the model
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)

print(f'Test accuracy: {test_acc}')

2. Designing a Perceptron for Classification

2.1 Introduction to the Perceptron

¢ Exercise: Manually compute the output of a perceptron for a given set of inputs and weights.

import numpy as np

# Define the perceptron
def perceptron(inputs, weights, bias):
linear_output = np.dot(inputs, weights) + bias

return 1 if linear_output > © else ©

# Example input
inputs = np.array([2, 3])
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weights = np.array([0.4, 0.7])
bias = -1.0

output = perceptron(inputs, weights, bias)

print(f"Output of the perceptron: {output}")

2.4 Implementing the Perceptron

¢ Exercise: Implement a perceptron from scratch and train it on the OR logic gate dataset.

import numpy as np

# Define the activation function (step function)
def step_function(x):

return np.where(x >= 0, 1, 0)

# Perceptron implementation
class Perceptron:
def __init_ (self, input_size, learning_rate=0.01)
self.weights = np.zeros(input_size + 1) # Including bias

self.learning_rate = learning_rate

def predict(self, x):
x_with_bias = np.insert(x, @, 1) # Add bias term
linear_output = np.dot(x_with_bias, self.weights)

return step_function(linear_output)

def train(self, X, y, epochs=10):
for _ in range(epochs):
for x_i, y_i in zip(X, y):
prediction = self.predict(x_i)
error = y_i - prediction

self.weights += self.learning_rate * error * np.insert(x_i, @, 1)

H*

Training data for OR logic gate
X = np.array([[e, @], [e, 1], [1, e], [1, 1]])
y = np.array([e, 1, 1, 1])

# Initialize and train perceptron
perceptron = Perceptron(input_size=2)

perceptron.train(X, y, epochs=10)

# Test perceptron
for x_i in X:

print(f"Input: {x_i}, Predicted Output: {perceptron.predict(x_1i)}")

3. Analyzing Parameter/Hyperparameter Impact

3.3 Common Hyperparameters

¢ Exercise: Experiment with different activation functions in a neural network and observe the changes in learning.

import tensorflow as tf

from tensorflow.keras import layers, models

# Define the model with different activation functions
model_relu = models.Sequential([
layers.Dense(64, activation='relu', input_shape=(784,)),
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')

D

model_tanh = models.Sequential([
layers.Dense(64, activation='tanh', input_shape=(784,)),

layers.Dense(64, activation='tanh'),
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layers.Dense(10, activation='softmax"')

D

# Compile the models
model_relu.compile(optimizer="adam', loss='sparse_categorical_crossentropy', metrics=["'accuracy'])

model_tanh.compile(optimizer="'adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Load and preprocess the MNIST dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

x_train, x_test = x_train.reshape(-1, 784), x_test.reshape(-1, 784)

# Train and evaluate the models
print("Training with RelLU activation...")

model_relu.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))

print("Training with Tanh activation...")

model_tanh.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))

4. Evaluating Architectures and Activation Functions

4.1 Evaluation of Neural Network Architectures

¢ Exercise: Design and evaluate a custom CNN architecture for a specific task (e.g., digit classification).

import tensorflow as tf

from tensorflow.keras import layers, models

# Custom CNN model
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation="relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),

layers.Dense(64, activation='relu

layers.Dense(10, activation='softmax"')

D)

# Compile the model

model.compile(optimizer="adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Load and preprocess the MNIST dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

x_train, x_test = x_train.reshape(-1, 28, 28, 1), x_test.reshape(-1, 28, 28, 1)

# Train the model

model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))

# Evaluate the model
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print(f'Test accuracy: {test_acc}')

5. Developing Comprehensive Evaluation Plans for Neural Network Models

5.1 Evaluation Metrics

¢ Exercise: Calculate and compare different evaluation metrics for a neural network model trained on an imbalanced dataset.

from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score

import numpy as np
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# Simulated true labels and predictions (imbalanced dataset)
y_true = np.array([0, ©, 0, 0, 1, 1, 1, 1, 1, 1])
y_pred = np.array([e, ©, @, 0, 0, 1, 1, 1, 0, 0])

# Calculate evaluation metrics

accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)

f1l = f1_score(y_true, y_pred)

print(f"Accuracy: {accuracy}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

5.2 Model Validation Techniques

¢ Exercise: Implement k-fold cross-validation for a neural network model and analyze the results.

from sklearn.model_selection import KFold

import numpy as np

#*

Dummy data for illustration
X = np.random.rand(100, 10) # 100 samples, 10 features
y = np.random.randint(@, 2, 100) # Binary target

# Define the model (e.g., simple perceptron)
def create_model():
model = models.Sequential([
layers.Dense(64, activation="relu', input_shape=(10,)),
layers.Dense(1, activation='sigmoid")
1
model.compile(optimizer="adam', loss='binary_crossentropy', metrics=['accuracy'])

return model

# K-fold cross-validation
kf = KFold(n_splits=5)

accuracy_scores = []

for train_index, test_index in kf.split(X):
X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

model = create_model()

model.fit(X_train, y_train, epochs=10, verbose=0)

loss, accuracy = model.evaluate(X_test, y_test, verbose=0)

accuracy_scores.append(accuracy)

print(f"K-fold Cross-Validation Accuracy Scores: {accuracy_scores}")

print(f"Mean Accuracy: {np.mean(accuracy_scores)}")

Start coding or generate with AI.

can visualize a neural network and a perceptron using Python, specifically with the matplotlib and networkx libraries. These visualizations will
help you see the structure of the networks, including inputs, weights, biases, and outputs.

1. Visualizing a Simple Neural Network This code will create a simple feedforward neural network with one hidden layer and visualize the
structure, showing inputs, weights, biases, and outputs.

Double-click (or enter) to edit

import matplotlib.pyplot as plt
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1mport networkx as nx

# Function to visualize a simple neural network

def

draw_neural_network():
G = nx.DiGraph()

# Adding nodes for input, hidden, and output layers
input_nodes = ['Input 1', 'Input 2', 'Input 3']
hidden_nodes = ['Hidden 1', 'Hidden 2']
output_nodes = ['Output 1']

# Adding edges with labels for weights and biases
edges = [

Unit1_Deep Learning.ipynb - Colab

('Input 1', 'Hidden 1', 'wll'), ('Input 1', ‘'Hidden 2', 'wl2'),

('Input 2', 'Hidden 1', 'w21'), ('Input 2', 'Hidden 2',
('Input 3', 'Hidden 1', 'w31'), ('Input 3', 'Hidden 2',
('Hidden 1', 'Output 1', 'wl'), ('Hidden 2', 'Output 1°,

1

biases = {'Hidden 1': 'bl', 'Hidden 2': 'b2', 'Output 1':

# Add nodes and edges to graph

G.add_nodes_from(input_nodes + hidden_nodes + output_nodes)
G.add_weighted_edges_from([(u, v, 1.0) for u, v, w in edges])

# Position the nodes in layers
pos = {

‘w22'),
‘w32'),

w2')

"b3'}

‘Input 1': (-1, 1), 'Input 2': (-1, @), 'Input 3': (-1, -1),

‘Hidden 1': (@, 0.5), 'Hidden 2': (@, -0.5),
‘Output 1': (1, @)

# Draw the network

nx.draw(G, pos, with_labels=True, node_size=3000, node_color="skyblue", font_size=10, font_weight="bold")

# Draw edges with weights and biases
edge_labels = {(u, v): w for u, v, w in edges}

bias_labels = {node: bias for node, bias in biases.items()}

nx.draw_networkx_edge_labels (G, pos, edge_labels=edge_labels, font_color="red")
nx.draw_networkx_labels (G, pos, labels=bias_labels, font_color="green")

plt.title("Simple Neural Network")
plt.show()

# Call the function to draw the neural network
draw_neural_network()

0
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Here's a step-by-step explanation of how the code visualizes a simple neural network using matplotlib and networkx.

v 1. Import Required Libraries

import matplotlib.pyplot as plt

import networkx as nx

« matplotlib.pyplot: A plotting library used for creating static, animated, and interactive visualizations in Python.
¢ networkx: A library for creating, manipulating, and visualizing complex networks or graphs.

2. Define the Function to Draw the Neural Network

def draw_neural_network():
G = nx.DiGraph()

o Adirected graph (DiGraph) is created using networkx . This type of graph has edges with a direction, which is suitable for representing
the flow of information in a neural network.

3. Define the Nodes for Each Layer

input_nodes = ['Input 1', 'Input 2', 'Input 3']
hidden_nodes = ['Hidden 1', 'Hidden 2']
output_nodes = ['Output 1']

¢ input_nodes: Represents the input layer with three input neurons.
¢ hidden_nodes: Represents the hidden layer with two hidden neurons.
¢ output_nodes: Represents the output layer with one output neuron.

4. Define the Edges with Weights and Biases

edges = [
('Input 1', 'Hidden 1', ‘'will'), ('Input 1', 'Hidden 2', 'wl2'),
('Input 2', 'Hidden 1', 'w21'), ('Input 2', 'Hidden 2', 'w22'),
('Input 3', 'Hidden 1', 'w31'), ('Input 3', 'Hidden 2', 'w32'"),
('Hidden 1', 'Output 1', 'wl'), ('Hidden 2', 'Output 1', 'w2')

]

biases = {'Hidden 1': 'bl', ‘'Hidden 2': 'b2', 'Output 1': 'b3'}

¢ edges: A list of tuples, each representing a connection between two neurons. The third element in each tuple represents the weight of the
connection.
¢ biases: A dictionary that stores the biases for the hidden and output neurons.

5. Add Nodes and Edges to the Graph

G.add_nodes_from(input_nodes + hidden_nodes + output_nodes)

G.add_weighted_edges_from([(u, v, 1.0) for u, v, w in edges])

¢ add_nodes_from: Adds all the neurons (nodes) to the graph.
» add_weighted_edges_from: Adds all the connections (edges) between the neurons. Here, 1.0 is used as a placeholder weight, which will
be visually annotated later.

6. Define the Positions for Each Node

pos = {
‘Input 1': (-1, 1), 'Input 2': (-1, @), 'Input 3': (-1, -1),
‘Hidden 1': (@, ©.5), 'Hidden 2': (@, -0.5),
‘Output 1': (1, @)

¢ pos: A dictionary that defines the position of each node in the graph. Nodes are positioned in a way that resembles a typical neural
network diagram:
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o Inputs are on the left.
o Hidden neurons are in the middle.
o The output neuron is on the right.

7. Draw the Network Structure
nx.draw(G, pos, with_labels=True, node_size=3000, node_color="skyblue", font_size=10, font_weight="bold")

» nx.draw: Draws the graph using the specified positions ( pos ). Nodes are labeled, and their size and color are customized.

o with_labels=True: Shows the labels for each node (neuron).

o node_size=3000 : Sets the size of the nodes.

© node_color="skyblue" : Sets the color of the nodes.

o font_size=10, font_weight="bold" : Customize the font size and weight of the labels.

8. Annotate the Edges with Weights and Biases

edge_labels = {(u, v): w for u, v, w in edges}

bias_labels = {node: bias for node, bias in biases.items()}

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color='red"')

nx.draw_networkx_labels(G, pos, labels=bias_labels, font_color='green')

edge_labels: A dictionary mapping each edge to its weight label.
bias_labels: A dictionary mapping each node to its bias label.
» nx.draw_networkx_edge_labels: Draws the edge labels (weights) on the graph with red color.

¢ nx.draw_networkx_labels: Draws the bias labels on the graph with green color.

9. Display the Graph

plt.title("Simple Neural Network")
plt.show()

o plt.title: Adds a title to the graph.
¢ plt.show: Displays the graph.

10. Call the Function

draw_neural_network()

¢ This line calls the draw_neural_network function to execute the code and visualize the simple neural network.
Final Output:

it produces a graph that visually represents a simple neural network with labeled inputs, weights, biases, and an output node. The network is
depicted in a way that is easy to understand, with clear annotations showing the connections between neurons and the associated weights and
biases.

Start coding or generate with AI.

v 2. Visualizing a Perceptron

This code will visualize a perceptron model, showing the input, weights, bias, and output.
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import matplotlib.pyplot as plt
import networkx as nx

# Function to visualize a perceptron
def draw_perceptron():
G = nx.DiGraph()

# Adding nodes for inputs and output
input_nodes = ['Input 1', 'Input 2']
output_node = ['Output']

# Adding edges with labels for weights
edges = [
('Input 1', 'Output', 'wl'),
('"Input 2", 'Output', 'w2")
]
bias = {'Output': 'b'}

# Add nodes and edges to graph
G.add_nodes_from(input_nodes + output_node)
G.add_weighted_edges_from([(u, v, 1.0) for u, v, w in edges])

# Position the nodes

pos = {
‘Input 1': (-1, ©.5), 'Input 2': (-1, -0.5),
'Output’: (1, @)

# Draw the perceptron
nx.draw(G, pos, with_labels=True, node_size=3000, node_color="lightgreen", font_size=10, font_weight="bold")

# Draw edges with weights and bias
edge_labels = {(u, v): w for u, v, w in edges}
bias_labels = {node: bias for node, bias in bias.items()}

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color='blue')
nx.draw_networkx_labels(G, pos, labels=bias_labels, font_color="green")

plt.title("Perceptron™)
plt.show()

# Call the function to draw the perceptron
draw_perceptron()

0

Perceptron
Input 1
Wy
Output
w2
Input 2
< >

Explanation: Nodes: Represent neurons in the network (input, hidden, output). Edges: Represent the connections between neurons, annotated
with weights. Bias: Shown near the respective neurons, indicating the bias for that neuron. These visualizations should help you see how inputs,
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weights, and biases contribute to the final output in both a neural network and a perceptron.

Here's a step-by-step explanation of how the code visualizes a perceptron using matplotlib and networkx.

v 1. Import Required Libraries

import matplotlib.pyplot as plt

import networkx as nx

« matplotlib.pyplot: A plotting library used for creating static, animated, and interactive visualizations in Python.
¢ networkx: A library for creating, manipulating, and visualizing complex networks or graphs.

2. Define the Function to Draw the Perceptron

def draw_perceptron():

G = nx.DiGraph()

¢ A directed graph (DiGraph) is created using networkx . This type of graph has edges with a direction, which is suitable for representing
the flow of information in a perceptron.

3. Define the Nodes for Input and Output

input_nodes = ['Input 1', 'Input 2']

output_node = ['Output']

¢ input_nodes: Represents the input layer with two input neurons.
¢ output_node: Represents the output neuron.

4. Define the Edges with Weights and Bias

edges = [
('Input 1', 'Output', 'wl'),
('Input 2', 'Output', 'w2")
]
bias = {'Output': 'b'}

¢ edges: A list of tuples, each representing a connection between an input neuron and the output neuron. The third element in each tuple
represents the weight of the connection.
¢ bias: A dictionary that stores the bias for the output neuron.

5. Add Nodes and Edges to the Graph

G.add_nodes_from(input_nodes + output_node)

G.add_weighted_edges_from([(u, v, 1.0) for u, v, w in edges])

¢ add_nodes_from: Adds all the neurons (nodes) to the graph.
» add_weighted_edges_from: Adds all the connections (edges) between the neurons. Here, 1.0 is used as a placeholder weight, which will
be visually annotated later.

6. Define the Positions for Each Node

pos = {
‘Input 1': (-1, ©.5), 'Input 2': (-1, -0.5),
‘Output’: (1, 0)

¢ pos: A dictionary that defines the position of each node in the graph. Nodes are positioned to reflect the typical structure of a perceptron:
o Inputs are on the left.
o The output neuron is on the right.
7. Draw the Perceptron Structure
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nx.draw(G, pos, with_labels=True, node_size=3000, node_color="lightgreen", font_size=10, font_weight="bold")

¢ nx.draw: Draws the graph using the specified positions ( pos ). Nodes are labeled, and their size and color are customized.

o with_labels=True: Shows the labels for each node (neuron).

o node_size=3000 : Sets the size of the nodes.

o node_color="lightgreen": Sets the color of the nodes.

o font_size=10, font_weight="bold" : Customize the font size and weight of the labels.

8. Annotate the Edges with Weights and the Bias

edge_labels = {(u, v): w for u, v, w in edges}

bias_labels = {node: bias for node, bias in bias.items()}

nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color='blue")

nx.draw_networkx_labels(G, pos, labels=bias_labels, font_color='green')

edge_labels: A dictionary mapping each edge to its weight label.

bias_labels: A dictionary mapping the output node to its bias label.
¢ nx.draw_networkx_edge_labels: Draws the edge labels (weights) on the graph with blue color.
¢ nx.draw_networkx_labels: Draws the bias label on the graph with green color.

9. Display the Graph

plt.title("Perceptron™)
plt.show()

¢ plt.title: Adds a title to the graph.
¢ plt.show: Displays the graph.

10. Call the Function

draw_perceptron()

e This line calls the draw_perceptron function to execute the code and visualize the perceptron.

Final Output:

it produces a graph that visually represents a perceptron with labeled inputs, weights, bias, and an output node. The perceptron is depicted in a
simple and clear manner, showing how the inputs connect to the output, with weights and biases labeled for easy understanding.

Start coding or generate with AI.

Multiple-choice questions (MCQs) based on the concepts related to neural networks,

v

perceptrons, and the code provided.

Multiple Choice Questions
1. What does the nx.DiGraph() function create in the code?

a) Undirected graph

b) Directed graph

c¢) Weighted graph

d) Neural network model

Answer: b) Directed graph

2. In the code, what do the variables input_nodes and output_node represent?

a) Edges and weights
b) Nodes of the neural network
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c) Biases of the network
d) Activation functions

Answer: b) Nodes of the neural network

3. What is the purpose of the add_weighted_edges_from function in the provided code?

a) To create nodes

b) To connect nodes with edges
c) To label nodes

d) To set biases

Answer: b) To connect nodes with edges

4. In the code, how is the bias for the output node represented?

a) As a weight

b) As an edge

c) As a separate node
d) As a dictionary entry

Answer: d) As a dictionary entry

5. Which library is used in the code to visualize the graph?

a) TensorFlow
b) PyTorch

c¢) matplotlib
d) Keras

Answer: ¢) matplotlib

6. What does the function nx.draw_networkx_edge_labels do in the code?

a) Draws the nodes

b) Draws the edges

c) Labels the edges with weights
d) Labels the nodes with biases

Answer: c) Labels the edges with weights

7. What does the plt.show() function do in the code?
a) Saves the graph as an image

b) Displays the graph

c) Closes the graph

d) Edits the graph

Answer: b) Displays the graph

8. What is the purpose of using the font_color="blue' argumentin nx.draw_networkx_edge_labels?

a) To color the nodes blue
b) To color the edges blue
c) To color the edge labels blue
d) To color the bias labels blue

Answer: c) To color the edge labels blue

9. In the neural network example, how many hidden nodes are defined?
a)1l

b) 2

c)3

d)4

Answer: b) 2
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10. What type of graph structure is most suitable for representing a neural network?
a) Undirected graph

b) Directed graph

c¢) Weighted graph

d) Unweighted graph

Answer: b) Directed graph

11. Which of the following best describes a perceptron?

a) A type of neuron in the brain

b) A single-layer neural network

¢) A multi-layer neural network

d) An unsupervised learning algorithm

Answer: b) A single-layer neural network

12. What is the role of the bias in a perceptron?

a) To normalize the input data

b) To shift the decision boundary
c¢) To multiply with the input

d) To activate the perceptron

Answer: b) To shift the decision boundary

13. In a perceptron, what is the activation function typically used for?

a) To add noise to the data

b) To calculate the weighted sum
c) To determine the output

d) To set the learning rate

Answer: ¢) To determine the output

14. Which of the following is NOT an activation function?
a) ReLU

b) Sigmoid

¢) Tanh

d) DiGraph

Answer: d) DiGraph

15. In the code, how are the positions of nodes in the graph defined?
a) Using a list

b) Using a tuple

¢) Using a dictionary

d) Automatically by the library

Answer: ¢) Using a dictionary

16. Which parameter in nx.draw sets the size of the nodes?
a) node_color

b) node_size

C) font_size

d) with_labels

Answer: b) node_size

17. What is the default shape of nodes in a networkx graph?

a) Square
b) Circle
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c) Triangle
d) Hexagon

Answer: b) Circle

18. In the code, what color is used to represent the nodes in the perceptron graph?

a) Red

b) Green

c) Blue

d) Lightgreen

Answer: d) Lightgreen

19. What is the role of weights in a perceptron?

a) To decrease the complexity

b) To eliminate noise

c) To determine the importance of inputs
d) To set the output value

Answer: c) To determine the importance of inputs

20. Which of the following can be considered as an output of a perceptron?

a) A weighted sum of inputs
b) A random value

c) A bias value

d) A threshold function result

Answer: d) A threshold function result

21. In the neural network code, how many input nodes are defined?
a1
b) 2
c)3
d) 4

Answer: c) 3

22. What does the term 'activation function' refer to in neural networks?

a) A function that initializes weights

b) A function that normalizes inputs

¢) A function that determines if a neuron should be activated
d) A function that controls the learning rate

Answer: ¢) A function that determines if a neuron should be activated

23. Which of the following is NOT an edge attribute in the code?

a) Weights

b) Biases

c) Nodes

d) Input connections

Answer: c) Nodes

24. In the context of neural networks, what is overfitting?

a) When the model performs equally well on training and test data

b) When the model performs poorly on both training and test data

¢) When the model performs well on training data but poorly on test data
d) When the model is too simple to capture data complexity

Answer: ¢c) When the model performs well on training data but poorly on test data
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25. In the neural network, which nodes are directly connected to the output node?
a) Input nodes
b) Hidden nodes

¢) Bias nodes
d) All of the above

Answer: b) Hidden nodes

26. What is the purpose of using nx.draw_networkx_labels in the perceptron code?

a) To draw the edges
b) To label the biases
¢) To label the weights
d) To create nodes

Answer: b) To label the biases

27. How does the bias affect the output of a perceptron?

a) It multiplies the input by a constant
b) It scales the output by a factor

c) It shifts the decision boundary

d) It normalizes the output

Answer: c) It shifts the decision boundary

28. Which of the following statements is true about a perceptron?

a) It can solve any non-linear problem

b) It has multiple hidden layers

c) It can only solve linearly separable problems
d) It requires multiple output nodes

Answer: ¢) It can only solve linearly separable problems

29. In a neural network, what is the main function of the hidden layer?

a) To output the final prediction

b) To introduce non-linearity into the model
¢) To store the weights

d) To add bias to the input

Answer: b) To introduce non-linearity into the model

30. What does the title function in matplotlib do?

a) Sets the title of the graph
b) Sets the color of the graph
c) Sets the labels of the graph

Start coding or generate with AI.

Answer: a) Sets the title of the graph
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